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LETTER TO THE EDITOR 

The mean square radius of a polyelectrolyte immersed in a 
1 : 1 electrolyte 

P Richmond? 
Unilever Research, Port Sunlight, Wirral, Cheshire L62 4XN, UK 

Received 30 May 1973 

Abstract. Methods introduced by Edwards and de Gennes for the study of polymer 
configurations with excluded volume are applied to the case of a uniformly charged 
polyelectrolyte immersed in a 1 :1 strong electrolyte of density no. The electrolyte is 
treated using the Debye-Huckel approximation and the following expression is 
obtained for the asymptotic mean square radius: 

where N is the number of links in the polyelectrolyte. 

It is eight years since Edwards (1965) first showed, using a mean field theory, that the 
mean square end-to-end distance R2 of a polymer was proportional to N6I5 where N 
is the number of links. The derivation has since been criticized on a number of grounds 
(see the review by de Gennes 1969) but represents a significant step forward and it does 
appear from numerical work to  be essentially correct (Fisher and Hiley 1961). In 
1969 de Gennes showed how the leading term of Edwards result could be derived in a 
very simple manner. In this note we shall apply the simple procedure of de Gennes to 
obtain an asymptotic expression for the mean square radius of a polyelectrolyte 
immersed in a 1 :1 strong electrolyte. 

Following de Gennes we picture the chain as an ideal collection of beads located at 
points rI , . . rN.  The length a = jri - I is fixed. Now it is assumed that by applying 
an external force field the mean polarization of the (n,n+ 1) link is nonzero, that is, 
rntl  - r ,  = U, .  For small values of ( U /  (<a) the associated decrease in entropy of the 
link is AS, = -3kun2/2a2. Summing over all links, the associated free energy is 
G = (3/2a2,B) X,un2. Differentiating this expression we can write ‘Newton’s law’ for a 
bead. Thus the force F acting on a bead is 

where the right-hand side is obtained by taking the continuum limit for the beads. 
When F can be derived from a scalar potential #, equation (1) can be integrated to  
obtain the ‘energy integral’ : 

3 ar 
+(U> -=(--) = constant. 

t On leave from Department of Applied Mathematics, Institute of Advanced Studies, Australian 
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The excluded volume result derived by Edwards can now be obtained by assuming that 
+(r) cc p(r)  where p(r)  is the density of monomers at r.  We shall neglect this excluded 
volume effect. Instead we suppose that each bead carries a positive charge q. Thus 
where +(U) is the electrostatic potential 

+(r> = q+(r).  (3) 
As we shall see, this potential can act at least as well as the hard core interaction in 
stretching the polymer. The electrostatic potential we now assume to be determined by 
Poisson's equation : 

V2+(r) = -4 v ( r )  - 4?7p(r). (4) 
where p(r) is the charge density at r of electrolyte in which the polyelectrolyte is 
immersed. We relate this latter quantity to 4 using the Boltzmann factor and ignore 
any specific binding effects of ions with the polymer. Thus 

p(r) = noq(e-B*@ -eS4@) N - 2noPq+(r> 3 ( 5 )  
where no is the mean density of positive (or negative) ions in the absence of the poly- 
electrolyte. Combining equations (4) and (5) we obtain 

Vz+(r) - K 2 + ( r )  + 4~qp(r)  = 0; K' = 8nno,Bq2. (6) 
Equations (2), (3) and (6) are now made self-consistent by assuming that the various 
functions are radially symmetric. Thus in the interval r ,  r + dr the average number of 
monomer units is 

p(r)4w2dr = dn. (7) 
Assuming that p ,  + and drldn vanish as I' --f oc we obtain from equations (2), (3) and 

We can now eliminate p from equations (6) and (8) to obtain 

Making the substitutions = y / r  and x = K T  we obtain the equation 

h 
y+- = 0 d2Y -- 

dx2 (xy)l12 
where 

Despite the obvious nonlinearity of this equation it is possible to obtain asymptotic 
solutions in the regions x -+ 0 and x --f CO. We consider each region separately. 

In the limit x + 0 we apply the boundary condition + -+ q/r since a link of the 
chain is situated at the origin. Thus y(0) = q. Clearly then in the limit x --f 0 we can 
drop the second term on the left-hand side of equation (10) to obtain 
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Integrating this equation yields 

where A is a constant. Obviously this expression is dominated by the unscreened 
Coulomb potential q/r due to the link at  the origin. 

I t  is amusing to substitute this form for 4 ( r )  into equations (8) and ( 7 ) .  We obtain 
from (8) 

Substituting equation (13) into equation ( 7 )  and integrating we then obtain 

Of course it is not consistent to use a potential valid for small r to deduce the large r 
behaviour of the polymer chain but one might interpret the result as being valid for the 
inner region of the polymer. 

Of more interest is the behaviour of the polymer for large r.  If h = 0 the solution 
to  equation (10) is y = e-=. Clearly for large x, this is not a solution when h # 0 since 
the third term, proportional to y-112, then diverges. In any case a solution of this kind 
leads to a monomer density p ( r )  which also diverges as r + co (see equation (8)). This 
essentially rules out any perturbation expansion in h and indicates the polyelectrolyte 
has a singular effect on the electrolyte. Now by inspection it can be seen that for x2 $ 1, 
an asymptotic solution to equation (IO) is y = (A2/x)113. Thus 

Hence from equation (8) we obtain 

Finally from equations (2 ) ,  (3) and (15) we find, after integrating, that 

N6I5. 

At first sight it is surprising that the exponent of N is the same as that obtained for the 
excluded volume case. However, we recall that the electrolytic solution acts to screen 
the long range Coulomb force between polymer links so the net effect will be that 
individual polymer links interact via a short range repulsive potential. 

The author is grateful to  Professor S F Edwards and V Uruniov for checking the 
analysis. 
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